// Copyright (c) 2015-2021 MinIO, Inc. // // This file is part of MinIO Object Storage stack // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Affero General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Affero General Public License for more details. // // You should have received a copy of the GNU Affero General Public License // along with this program. If not, see . package cmd import ( "errors" "fmt" "net/url" "runtime" "sort" "strings" "github.com/cespare/xxhash/v2" "github.com/minio/minio-go/v7/pkg/set" "github.com/minio/minio/internal/config" "github.com/minio/pkg/v3/ellipses" "github.com/minio/pkg/v3/env" ) // This file implements and supports ellipses pattern for // `minio server` command line arguments. // Endpoint set represents parsed ellipses values, also provides // methods to get the sets of endpoints. type endpointSet struct { argPatterns []ellipses.ArgPattern endpoints []string // Endpoints saved from previous GetEndpoints(). setIndexes [][]uint64 // All the sets. } // Supported set sizes this is used to find the optimal // single set size. var setSizes = []uint64{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} // getDivisibleSize - returns a greatest common divisor of // all the ellipses sizes. func getDivisibleSize(totalSizes []uint64) (result uint64) { gcd := func(x, y uint64) uint64 { for y != 0 { x, y = y, x%y } return x } result = totalSizes[0] for i := 1; i < len(totalSizes); i++ { result = gcd(result, totalSizes[i]) } return result } // isValidSetSize - checks whether given count is a valid set size for erasure coding. var isValidSetSize = func(count uint64) bool { return (count >= setSizes[0] && count <= setSizes[len(setSizes)-1]) } func commonSetDriveCount(divisibleSize uint64, setCounts []uint64) (setSize uint64) { // prefers setCounts to be sorted for optimal behavior. if divisibleSize < setCounts[len(setCounts)-1] { return divisibleSize } // Figure out largest value of total_drives_in_erasure_set which results // in least number of total_drives/total_drives_erasure_set ratio. prevD := divisibleSize / setCounts[0] for _, cnt := range setCounts { if divisibleSize%cnt == 0 { d := divisibleSize / cnt if d <= prevD { prevD = d setSize = cnt } } } return setSize } // possibleSetCountsWithSymmetry returns symmetrical setCounts based on the // input argument patterns, the symmetry calculation is to ensure that // we also use uniform number of drives common across all ellipses patterns. func possibleSetCountsWithSymmetry(setCounts []uint64, argPatterns []ellipses.ArgPattern) []uint64 { newSetCounts := make(map[uint64]struct{}) for _, ss := range setCounts { var symmetry bool for _, argPattern := range argPatterns { for _, p := range argPattern { if uint64(len(p.Seq)) > ss { symmetry = uint64(len(p.Seq))%ss == 0 } else { symmetry = ss%uint64(len(p.Seq)) == 0 } } } // With no arg patterns, it is expected that user knows // the right symmetry, so either ellipses patterns are // provided (recommended) or no ellipses patterns. if _, ok := newSetCounts[ss]; !ok && (symmetry || argPatterns == nil) { newSetCounts[ss] = struct{}{} } } setCounts = []uint64{} for setCount := range newSetCounts { setCounts = append(setCounts, setCount) } // Not necessarily needed but it ensures to the readers // eyes that we prefer a sorted setCount slice for the // subsequent function to figure out the right common // divisor, it avoids loops. sort.Slice(setCounts, func(i, j int) bool { return setCounts[i] < setCounts[j] }) return setCounts } // getSetIndexes returns list of indexes which provides the set size // on each index, this function also determines the final set size // The final set size has the affinity towards choosing smaller // indexes (total sets) func getSetIndexes(args []string, totalSizes []uint64, setDriveCount uint64, argPatterns []ellipses.ArgPattern) (setIndexes [][]uint64, err error) { if len(totalSizes) == 0 || len(args) == 0 { return nil, errInvalidArgument } setIndexes = make([][]uint64, len(totalSizes)) for _, totalSize := range totalSizes { // Check if totalSize has minimum range upto setSize if totalSize < setSizes[0] || totalSize < setDriveCount { msg := fmt.Sprintf("Incorrect number of endpoints provided %s", args) return nil, config.ErrInvalidNumberOfErasureEndpoints(nil).Msg(msg) } } commonSize := getDivisibleSize(totalSizes) possibleSetCounts := func(setSize uint64) (ss []uint64) { for _, s := range setSizes { if setSize%s == 0 { ss = append(ss, s) } } return ss } setCounts := possibleSetCounts(commonSize) if len(setCounts) == 0 { msg := fmt.Sprintf("Incorrect number of endpoints provided %s, number of drives %d is not divisible by any supported erasure set sizes %d", args, commonSize, setSizes) return nil, config.ErrInvalidNumberOfErasureEndpoints(nil).Msg(msg) } var setSize uint64 // Custom set drive count allows to override automatic distribution. // only meant if you want to further optimize drive distribution. if setDriveCount > 0 { msg := fmt.Sprintf("Invalid set drive count. Acceptable values for %d number drives are %d", commonSize, setCounts) var found bool for _, ss := range setCounts { if ss == setDriveCount { found = true } } if !found { return nil, config.ErrInvalidErasureSetSize(nil).Msg(msg) } // No automatic symmetry calculation expected, user is on their own setSize = setDriveCount } else { // Returns possible set counts with symmetry. setCounts = possibleSetCountsWithSymmetry(setCounts, argPatterns) if len(setCounts) == 0 { msg := fmt.Sprintf("No symmetric distribution detected with input endpoints provided %s, drives %d cannot be spread symmetrically by any supported erasure set sizes %d", args, commonSize, setSizes) return nil, config.ErrInvalidNumberOfErasureEndpoints(nil).Msg(msg) } // Final set size with all the symmetry accounted for. setSize = commonSetDriveCount(commonSize, setCounts) } // Check whether setSize is with the supported range. if !isValidSetSize(setSize) { msg := fmt.Sprintf("Incorrect number of endpoints provided %s, number of drives %d is not divisible by any supported erasure set sizes %d", args, commonSize, setSizes) return nil, config.ErrInvalidNumberOfErasureEndpoints(nil).Msg(msg) } for i := range totalSizes { for j := uint64(0); j < totalSizes[i]/setSize; j++ { setIndexes[i] = append(setIndexes[i], setSize) } } return setIndexes, nil } // Returns all the expanded endpoints, each argument is expanded separately. func (s *endpointSet) getEndpoints() (endpoints []string) { if len(s.endpoints) != 0 { return s.endpoints } for _, argPattern := range s.argPatterns { for _, lbls := range argPattern.Expand() { endpoints = append(endpoints, strings.Join(lbls, "")) } } s.endpoints = endpoints return endpoints } // Get returns the sets representation of the endpoints // this function also intelligently decides on what will // be the right set size etc. func (s endpointSet) Get() (sets [][]string) { k := uint64(0) endpoints := s.getEndpoints() for i := range s.setIndexes { for j := range s.setIndexes[i] { sets = append(sets, endpoints[k:s.setIndexes[i][j]+k]) k = s.setIndexes[i][j] + k } } return sets } // Return the total size for each argument patterns. func getTotalSizes(argPatterns []ellipses.ArgPattern) []uint64 { var totalSizes []uint64 for _, argPattern := range argPatterns { var totalSize uint64 = 1 for _, p := range argPattern { totalSize *= uint64(len(p.Seq)) } totalSizes = append(totalSizes, totalSize) } return totalSizes } // Parses all arguments and returns an endpointSet which is a collection // of endpoints following the ellipses pattern, this is what is used // by the object layer for initializing itself. func parseEndpointSet(setDriveCount uint64, args ...string) (ep endpointSet, err error) { argPatterns := make([]ellipses.ArgPattern, len(args)) for i, arg := range args { patterns, perr := ellipses.FindEllipsesPatterns(arg) if perr != nil { return endpointSet{}, config.ErrInvalidErasureEndpoints(nil).Msg(perr.Error()) } argPatterns[i] = patterns } ep.setIndexes, err = getSetIndexes(args, getTotalSizes(argPatterns), setDriveCount, argPatterns) if err != nil { return endpointSet{}, config.ErrInvalidErasureEndpoints(nil).Msg(err.Error()) } ep.argPatterns = argPatterns return ep, nil } // GetAllSets - parses all ellipses input arguments, expands them into // corresponding list of endpoints chunked evenly in accordance with a // specific set size. // For example: {1...64} is divided into 4 sets each of size 16. // This applies to even distributed setup syntax as well. func GetAllSets(setDriveCount uint64, args ...string) ([][]string, error) { var setArgs [][]string if !ellipses.HasEllipses(args...) { var setIndexes [][]uint64 // Check if we have more one args. if len(args) > 1 { var err error setIndexes, err = getSetIndexes(args, []uint64{uint64(len(args))}, setDriveCount, nil) if err != nil { return nil, err } } else { // We are in FS setup, proceed forward. setIndexes = [][]uint64{{uint64(len(args))}} } s := endpointSet{ endpoints: args, setIndexes: setIndexes, } setArgs = s.Get() } else { s, err := parseEndpointSet(setDriveCount, args...) if err != nil { return nil, err } setArgs = s.Get() } uniqueArgs := set.NewStringSet() for _, sargs := range setArgs { for _, arg := range sargs { if uniqueArgs.Contains(arg) { return nil, config.ErrInvalidErasureEndpoints(nil).Msg(fmt.Sprintf("Input args (%s) has duplicate ellipses", args)) } uniqueArgs.Add(arg) } } return setArgs, nil } // Override set drive count for manual distribution. const ( EnvErasureSetDriveCount = "MINIO_ERASURE_SET_DRIVE_COUNT" ) type node struct { nodeName string disks []string } type endpointsList []node func (el *endpointsList) add(arg string) error { u, err := url.Parse(arg) if err != nil { return err } found := false list := *el for i := range list { if list[i].nodeName == u.Host { list[i].disks = append(list[i].disks, u.String()) found = true break } } if !found { list = append(list, node{nodeName: u.Host, disks: []string{u.String()}}) } *el = list return nil } type poolArgs struct { args []string setDriveCount uint64 } // buildDisksLayoutFromConfFile supports with and without ellipses transparently. func buildDisksLayoutFromConfFile(pools []poolArgs) (layout disksLayout, err error) { if len(pools) == 0 { return layout, errInvalidArgument } for _, list := range pools { var endpointsList endpointsList for _, arg := range list.args { switch { case ellipses.HasList(arg): patterns, err := ellipses.FindListPatterns(arg) if err != nil { return layout, err } for _, exp := range patterns.Expand() { for _, ep := range exp { if err := endpointsList.add(ep); err != nil { return layout, err } } } case ellipses.HasEllipses(arg): patterns, err := ellipses.FindEllipsesPatterns(arg) if err != nil { return layout, err } for _, exp := range patterns.Expand() { if err := endpointsList.add(strings.Join(exp, "")); err != nil { return layout, err } } default: if err := endpointsList.add(arg); err != nil { return layout, err } } } var stopping bool var singleNode bool var eps []string for i := 0; ; i++ { for _, node := range endpointsList { if node.nodeName == "" { singleNode = true } if len(node.disks) <= i { stopping = true continue } if stopping { return layout, errors.New("number of disks per node does not match") } eps = append(eps, node.disks[i]) } if stopping { break } } for _, node := range endpointsList { if node.nodeName != "" && singleNode { return layout, errors.New("all arguments must but either single node or distributed") } } setArgs, err := GetAllSets(list.setDriveCount, eps...) if err != nil { return layout, err } h := xxhash.New() for _, s := range setArgs { for _, d := range s { h.WriteString(d) } } layout.pools = append(layout.pools, poolDisksLayout{ cmdline: fmt.Sprintf("hash:%x", h.Sum(nil)), layout: setArgs, }) } return } // mergeDisksLayoutFromArgs supports with and without ellipses transparently. func mergeDisksLayoutFromArgs(args []string, ctxt *serverCtxt) (err error) { if len(args) == 0 { return errInvalidArgument } ok := true for _, arg := range args { ok = ok && !ellipses.HasEllipses(arg) } var setArgs [][]string v, err := env.GetInt(EnvErasureSetDriveCount, 0) if err != nil { return err } setDriveCount := uint64(v) // None of the args have ellipses use the old style. if ok { setArgs, err = GetAllSets(setDriveCount, args...) if err != nil { return err } ctxt.Layout = disksLayout{ legacy: true, pools: []poolDisksLayout{{layout: setArgs, cmdline: strings.Join(args, " ")}}, } return } for _, arg := range args { if !ellipses.HasEllipses(arg) && len(args) > 1 { // TODO: support SNSD deployments to be decommissioned in future return fmt.Errorf("all args must have ellipses for pool expansion (%w) args: %s", errInvalidArgument, args) } setArgs, err = GetAllSets(setDriveCount, arg) if err != nil { return err } ctxt.Layout.pools = append(ctxt.Layout.pools, poolDisksLayout{cmdline: arg, layout: setArgs}) } return } // CreateServerEndpoints - validates and creates new endpoints from input args, supports // both ellipses and without ellipses transparently. func createServerEndpoints(serverAddr string, poolArgs []poolDisksLayout, legacy bool) ( endpointServerPools EndpointServerPools, setupType SetupType, err error, ) { if len(poolArgs) == 0 { return nil, -1, errInvalidArgument } poolEndpoints, setupType, err := CreatePoolEndpoints(serverAddr, poolArgs...) if err != nil { return nil, -1, err } for i, endpointList := range poolEndpoints { if err = endpointServerPools.Add(PoolEndpoints{ Legacy: legacy, SetCount: len(poolArgs[i].layout), DrivesPerSet: len(poolArgs[i].layout[0]), Endpoints: endpointList, Platform: fmt.Sprintf("OS: %s | Arch: %s", runtime.GOOS, runtime.GOARCH), CmdLine: poolArgs[i].cmdline, }); err != nil { return nil, -1, err } } return endpointServerPools, setupType, nil }