muun-recovery/vendor/github.com/btcsuite/btcd/btcjson/help.go

561 lines
18 KiB
Go

// Copyright (c) 2015 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package btcjson
import (
"bytes"
"fmt"
"reflect"
"strings"
"text/tabwriter"
)
// baseHelpDescs house the various help labels, types, and example values used
// when generating help. The per-command synopsis, field descriptions,
// conditions, and result descriptions are to be provided by the caller.
var baseHelpDescs = map[string]string{
// Misc help labels and output.
"help-arguments": "Arguments",
"help-arguments-none": "None",
"help-result": "Result",
"help-result-nothing": "Nothing",
"help-default": "default",
"help-optional": "optional",
"help-required": "required",
// JSON types.
"json-type-numeric": "numeric",
"json-type-string": "string",
"json-type-bool": "boolean",
"json-type-array": "array of ",
"json-type-object": "object",
"json-type-value": "value",
// JSON examples.
"json-example-string": "value",
"json-example-bool": "true|false",
"json-example-map-data": "data",
"json-example-unknown": "unknown",
}
// descLookupFunc is a function which is used to lookup a description given
// a key.
type descLookupFunc func(string) string
// reflectTypeToJSONType returns a string that represents the JSON type
// associated with the provided Go type.
func reflectTypeToJSONType(xT descLookupFunc, rt reflect.Type) string {
kind := rt.Kind()
if isNumeric(kind) {
return xT("json-type-numeric")
}
switch kind {
case reflect.String:
return xT("json-type-string")
case reflect.Bool:
return xT("json-type-bool")
case reflect.Array, reflect.Slice:
return xT("json-type-array") + reflectTypeToJSONType(xT,
rt.Elem())
case reflect.Struct:
return xT("json-type-object")
case reflect.Map:
return xT("json-type-object")
}
return xT("json-type-value")
}
// resultStructHelp returns a slice of strings containing the result help output
// for a struct. Each line makes use of tabs to separate the relevant pieces so
// a tabwriter can be used later to line everything up. The descriptions are
// pulled from the active help descriptions map based on the lowercase version
// of the provided reflect type and json name (or the lowercase version of the
// field name if no json tag was specified).
func resultStructHelp(xT descLookupFunc, rt reflect.Type, indentLevel int) []string {
indent := strings.Repeat(" ", indentLevel)
typeName := strings.ToLower(rt.Name())
// Generate the help for each of the fields in the result struct.
numField := rt.NumField()
results := make([]string, 0, numField)
for i := 0; i < numField; i++ {
rtf := rt.Field(i)
// The field name to display is the json name when it's
// available, otherwise use the lowercase field name.
var fieldName string
if tag := rtf.Tag.Get("json"); tag != "" {
fieldName = strings.Split(tag, ",")[0]
} else {
fieldName = strings.ToLower(rtf.Name)
}
// Deference pointer if needed.
rtfType := rtf.Type
if rtfType.Kind() == reflect.Ptr {
rtfType = rtf.Type.Elem()
}
// Generate the JSON example for the result type of this struct
// field. When it is a complex type, examine the type and
// adjust the opening bracket and brace combination accordingly.
fieldType := reflectTypeToJSONType(xT, rtfType)
fieldDescKey := typeName + "-" + fieldName
fieldExamples, isComplex := reflectTypeToJSONExample(xT,
rtfType, indentLevel, fieldDescKey)
if isComplex {
var brace string
kind := rtfType.Kind()
if kind == reflect.Array || kind == reflect.Slice {
brace = "[{"
} else {
brace = "{"
}
result := fmt.Sprintf("%s\"%s\": %s\t(%s)\t%s", indent,
fieldName, brace, fieldType, xT(fieldDescKey))
results = append(results, result)
results = append(results, fieldExamples...)
} else {
result := fmt.Sprintf("%s\"%s\": %s,\t(%s)\t%s", indent,
fieldName, fieldExamples[0], fieldType,
xT(fieldDescKey))
results = append(results, result)
}
}
return results
}
// reflectTypeToJSONExample generates example usage in the format used by the
// help output. It handles arrays, slices and structs recursively. The output
// is returned as a slice of lines so the final help can be nicely aligned via
// a tab writer. A bool is also returned which specifies whether or not the
// type results in a complex JSON object since they need to be handled
// differently.
func reflectTypeToJSONExample(xT descLookupFunc, rt reflect.Type, indentLevel int, fieldDescKey string) ([]string, bool) {
// Indirect pointer if needed.
if rt.Kind() == reflect.Ptr {
rt = rt.Elem()
}
kind := rt.Kind()
if isNumeric(kind) {
if kind == reflect.Float32 || kind == reflect.Float64 {
return []string{"n.nnn"}, false
}
return []string{"n"}, false
}
switch kind {
case reflect.String:
return []string{`"` + xT("json-example-string") + `"`}, false
case reflect.Bool:
return []string{xT("json-example-bool")}, false
case reflect.Struct:
indent := strings.Repeat(" ", indentLevel)
results := resultStructHelp(xT, rt, indentLevel+1)
// An opening brace is needed for the first indent level. For
// all others, it will be included as a part of the previous
// field.
if indentLevel == 0 {
newResults := make([]string, len(results)+1)
newResults[0] = "{"
copy(newResults[1:], results)
results = newResults
}
// The closing brace has a comma after it except for the first
// indent level. The final tabs are necessary so the tab writer
// lines things up properly.
closingBrace := indent + "}"
if indentLevel > 0 {
closingBrace += ","
}
results = append(results, closingBrace+"\t\t")
return results, true
case reflect.Array, reflect.Slice:
results, isComplex := reflectTypeToJSONExample(xT, rt.Elem(),
indentLevel, fieldDescKey)
// When the result is complex, it is because this is an array of
// objects.
if isComplex {
// When this is at indent level zero, there is no
// previous field to house the opening array bracket, so
// replace the opening object brace with the array
// syntax. Also, replace the final closing object brace
// with the variadiac array closing syntax.
indent := strings.Repeat(" ", indentLevel)
if indentLevel == 0 {
results[0] = indent + "[{"
results[len(results)-1] = indent + "},...]"
return results, true
}
// At this point, the indent level is greater than 0, so
// the opening array bracket and object brace are
// already a part of the previous field. However, the
// closing entry is a simple object brace, so replace it
// with the variadiac array closing syntax. The final
// tabs are necessary so the tab writer lines things up
// properly.
results[len(results)-1] = indent + "},...],\t\t"
return results, true
}
// It's an array of primitives, so return the formatted text
// accordingly.
return []string{fmt.Sprintf("[%s,...]", results[0])}, false
case reflect.Map:
indent := strings.Repeat(" ", indentLevel)
results := make([]string, 0, 3)
// An opening brace is needed for the first indent level. For
// all others, it will be included as a part of the previous
// field.
if indentLevel == 0 {
results = append(results, indent+"{")
}
// Maps are a bit special in that they need to have the key,
// value, and description of the object entry specifically
// called out.
innerIndent := strings.Repeat(" ", indentLevel+1)
result := fmt.Sprintf("%s%q: %s, (%s) %s", innerIndent,
xT(fieldDescKey+"--key"), xT(fieldDescKey+"--value"),
reflectTypeToJSONType(xT, rt), xT(fieldDescKey+"--desc"))
results = append(results, result)
results = append(results, innerIndent+"...")
results = append(results, indent+"}")
return results, true
}
return []string{xT("json-example-unknown")}, false
}
// resultTypeHelp generates and returns formatted help for the provided result
// type.
func resultTypeHelp(xT descLookupFunc, rt reflect.Type, fieldDescKey string) string {
// Generate the JSON example for the result type.
results, isComplex := reflectTypeToJSONExample(xT, rt, 0, fieldDescKey)
// When this is a primitive type, add the associated JSON type and
// result description into the final string, format it accordingly,
// and return it.
if !isComplex {
return fmt.Sprintf("%s (%s) %s", results[0],
reflectTypeToJSONType(xT, rt), xT(fieldDescKey))
}
// At this point, this is a complex type that already has the JSON types
// and descriptions in the results. Thus, use a tab writer to nicely
// align the help text.
var formatted bytes.Buffer
w := new(tabwriter.Writer)
w.Init(&formatted, 0, 4, 1, ' ', 0)
for i, text := range results {
if i == len(results)-1 {
fmt.Fprintf(w, text)
} else {
fmt.Fprintln(w, text)
}
}
w.Flush()
return formatted.String()
}
// argTypeHelp returns the type of provided command argument as a string in the
// format used by the help output. In particular, it includes the JSON type
// (boolean, numeric, string, array, object) along with optional and the default
// value if applicable.
func argTypeHelp(xT descLookupFunc, structField reflect.StructField, defaultVal *reflect.Value) string {
// Indirect the pointer if needed and track if it's an optional field.
fieldType := structField.Type
var isOptional bool
if fieldType.Kind() == reflect.Ptr {
fieldType = fieldType.Elem()
isOptional = true
}
// When there is a default value, it must also be a pointer due to the
// rules enforced by RegisterCmd.
if defaultVal != nil {
indirect := defaultVal.Elem()
defaultVal = &indirect
}
// Convert the field type to a JSON type.
details := make([]string, 0, 3)
details = append(details, reflectTypeToJSONType(xT, fieldType))
// Add optional and default value to the details if needed.
if isOptional {
details = append(details, xT("help-optional"))
// Add the default value if there is one. This is only checked
// when the field is optional since a non-optional field can't
// have a default value.
if defaultVal != nil {
val := defaultVal.Interface()
if defaultVal.Kind() == reflect.String {
val = fmt.Sprintf(`"%s"`, val)
}
str := fmt.Sprintf("%s=%v", xT("help-default"), val)
details = append(details, str)
}
} else {
details = append(details, xT("help-required"))
}
return strings.Join(details, ", ")
}
// argHelp generates and returns formatted help for the provided command.
func argHelp(xT descLookupFunc, rtp reflect.Type, defaults map[int]reflect.Value, method string) string {
// Return now if the command has no arguments.
rt := rtp.Elem()
numFields := rt.NumField()
if numFields == 0 {
return ""
}
// Generate the help for each argument in the command. Several
// simplifying assumptions are made here because the RegisterCmd
// function has already rigorously enforced the layout.
args := make([]string, 0, numFields)
for i := 0; i < numFields; i++ {
rtf := rt.Field(i)
var defaultVal *reflect.Value
if defVal, ok := defaults[i]; ok {
defaultVal = &defVal
}
fieldName := strings.ToLower(rtf.Name)
helpText := fmt.Sprintf("%d.\t%s\t(%s)\t%s", i+1, fieldName,
argTypeHelp(xT, rtf, defaultVal),
xT(method+"-"+fieldName))
args = append(args, helpText)
// For types which require a JSON object, or an array of JSON
// objects, generate the full syntax for the argument.
fieldType := rtf.Type
if fieldType.Kind() == reflect.Ptr {
fieldType = fieldType.Elem()
}
kind := fieldType.Kind()
switch kind {
case reflect.Struct:
fieldDescKey := fmt.Sprintf("%s-%s", method, fieldName)
resultText := resultTypeHelp(xT, fieldType, fieldDescKey)
args = append(args, resultText)
case reflect.Map:
fieldDescKey := fmt.Sprintf("%s-%s", method, fieldName)
resultText := resultTypeHelp(xT, fieldType, fieldDescKey)
args = append(args, resultText)
case reflect.Array, reflect.Slice:
fieldDescKey := fmt.Sprintf("%s-%s", method, fieldName)
if rtf.Type.Elem().Kind() == reflect.Struct {
resultText := resultTypeHelp(xT, fieldType,
fieldDescKey)
args = append(args, resultText)
}
}
}
// Add argument names, types, and descriptions if there are any. Use a
// tab writer to nicely align the help text.
var formatted bytes.Buffer
w := new(tabwriter.Writer)
w.Init(&formatted, 0, 4, 1, ' ', 0)
for _, text := range args {
fmt.Fprintln(w, text)
}
w.Flush()
return formatted.String()
}
// methodHelp generates and returns the help output for the provided command
// and method info. This is the main work horse for the exported MethodHelp
// function.
func methodHelp(xT descLookupFunc, rtp reflect.Type, defaults map[int]reflect.Value, method string, resultTypes []interface{}) string {
// Start off with the method usage and help synopsis.
help := fmt.Sprintf("%s\n\n%s\n", methodUsageText(rtp, defaults, method),
xT(method+"--synopsis"))
// Generate the help for each argument in the command.
if argText := argHelp(xT, rtp, defaults, method); argText != "" {
help += fmt.Sprintf("\n%s:\n%s", xT("help-arguments"),
argText)
} else {
help += fmt.Sprintf("\n%s:\n%s\n", xT("help-arguments"),
xT("help-arguments-none"))
}
// Generate the help text for each result type.
resultTexts := make([]string, 0, len(resultTypes))
for i := range resultTypes {
rtp := reflect.TypeOf(resultTypes[i])
fieldDescKey := fmt.Sprintf("%s--result%d", method, i)
if resultTypes[i] == nil {
resultText := xT("help-result-nothing")
resultTexts = append(resultTexts, resultText)
continue
}
resultText := resultTypeHelp(xT, rtp.Elem(), fieldDescKey)
resultTexts = append(resultTexts, resultText)
}
// Add result types and descriptions. When there is more than one
// result type, also add the condition which triggers it.
if len(resultTexts) > 1 {
for i, resultText := range resultTexts {
condKey := fmt.Sprintf("%s--condition%d", method, i)
help += fmt.Sprintf("\n%s (%s):\n%s\n",
xT("help-result"), xT(condKey), resultText)
}
} else if len(resultTexts) > 0 {
help += fmt.Sprintf("\n%s:\n%s\n", xT("help-result"),
resultTexts[0])
} else {
help += fmt.Sprintf("\n%s:\n%s\n", xT("help-result"),
xT("help-result-nothing"))
}
return help
}
// isValidResultType returns whether the passed reflect kind is one of the
// acceptable types for results.
func isValidResultType(kind reflect.Kind) bool {
if isNumeric(kind) {
return true
}
switch kind {
case reflect.String, reflect.Struct, reflect.Array, reflect.Slice,
reflect.Bool, reflect.Map:
return true
}
return false
}
// GenerateHelp generates and returns help output for the provided method and
// result types given a map to provide the appropriate keys for the method
// synopsis, field descriptions, conditions, and result descriptions. The
// method must be associated with a registered type. All commands provided by
// this package are registered by default.
//
// The resultTypes must be pointer-to-types which represent the specific types
// of values the command returns. For example, if the command only returns a
// boolean value, there should only be a single entry of (*bool)(nil). Note
// that each type must be a single pointer to the type. Therefore, it is
// recommended to simply pass a nil pointer cast to the appropriate type as
// previously shown.
//
// The provided descriptions map must contain all of the keys or an error will
// be returned which includes the missing key, or the final missing key when
// there is more than one key missing. The generated help in the case of such
// an error will use the key in place of the description.
//
// The following outlines the required keys:
// "<method>--synopsis" Synopsis for the command
// "<method>-<lowerfieldname>" Description for each command argument
// "<typename>-<lowerfieldname>" Description for each object field
// "<method>--condition<#>" Description for each result condition
// "<method>--result<#>" Description for each primitive result num
//
// Notice that the "special" keys synopsis, condition<#>, and result<#> are
// preceded by a double dash to ensure they don't conflict with field names.
//
// The condition keys are only required when there is more than on result type,
// and the result key for a given result type is only required if it's not an
// object.
//
// For example, consider the 'help' command itself. There are two possible
// returns depending on the provided parameters. So, the help would be
// generated by calling the function as follows:
// GenerateHelp("help", descs, (*string)(nil), (*string)(nil)).
//
// The following keys would then be required in the provided descriptions map:
//
// "help--synopsis": "Returns a list of all commands or help for ...."
// "help-command": "The command to retrieve help for",
// "help--condition0": "no command provided"
// "help--condition1": "command specified"
// "help--result0": "List of commands"
// "help--result1": "Help for specified command"
func GenerateHelp(method string, descs map[string]string, resultTypes ...interface{}) (string, error) {
// Look up details about the provided method and error out if not
// registered.
registerLock.RLock()
rtp, ok := methodToConcreteType[method]
info := methodToInfo[method]
registerLock.RUnlock()
if !ok {
str := fmt.Sprintf("%q is not registered", method)
return "", makeError(ErrUnregisteredMethod, str)
}
// Validate each result type is a pointer to a supported type (or nil).
for i, resultType := range resultTypes {
if resultType == nil {
continue
}
rtp := reflect.TypeOf(resultType)
if rtp.Kind() != reflect.Ptr {
str := fmt.Sprintf("result #%d (%v) is not a pointer",
i, rtp.Kind())
return "", makeError(ErrInvalidType, str)
}
elemKind := rtp.Elem().Kind()
if !isValidResultType(elemKind) {
str := fmt.Sprintf("result #%d (%v) is not an allowed "+
"type", i, elemKind)
return "", makeError(ErrInvalidType, str)
}
}
// Create a closure for the description lookup function which falls back
// to the base help descriptions map for unrecognized keys and tracks
// and missing keys.
var missingKey string
xT := func(key string) string {
if desc, ok := descs[key]; ok {
return desc
}
if desc, ok := baseHelpDescs[key]; ok {
return desc
}
missingKey = key
return key
}
// Generate and return the help for the method.
help := methodHelp(xT, rtp, info.defaults, method, resultTypes)
if missingKey != "" {
return help, makeError(ErrMissingDescription, missingKey)
}
return help, nil
}